LACHHMANGARH-SIKAR

SYLLABUS \& LESSON PLANNER 2022-23

CLASS	X
SUBJECT	Mathematics
TEACHER'S NAME	Praveen Saini

SYLLABUS						
CH. NO.	NAME OF CHAPTER	WORKING DAY	PERIOD	TOPIC	MONTH	WEEK
Unit No: II	Algebra:- Polynomials, Pair of Linerar Equations in two variables	21	27	Zeros of a polynomial. Relationship between zeros and coefficients of quadratic polynomials	April	1
				Pair of linear equations in two variables and graphical method of their solution, consistency/inconsistency. Algebraic conditions for number of solutions. Solution of a pair of linear equations in two variables algebraically by substitution, by elimination. Simple situational problems		$2 \& 3$
Unit: II	Algebra:- Quadratic Equation Arithmetic Progressions	17	27	Standard form of a quadratic equation ax2 + bx + $\mathrm{c}=0,(\mathrm{a} \neq 0)$. Solutions of quadratic equations (only real roots) by factorization, and by using quadratic formula. Relationship between	May	1
				Situational problems based on quadratic equations related to day to day activities to be		
				Motivation for studying Arithmetic Progression Derivation of the nth term and sum of the first n terms of A.P. and their application in solving daily life problems		2
Unit : III	Coordinate Geometry	9	9	of linear equations. Distance formula. Section formula (internal division)	June	1
Revision for the Test consisting the syllabus completed till now					July	1
					2	

Unit:V	Trigonometry	${ }^{23}$	36	INTRODUCTION 10 TRIGONOMEIRY Trigonometric ratios of an acute angle of a rightangled triangle. Proof of their existence (well defined); motivate the ratios whichever are defined at 00 and 900 . Values of the trigonometric ratios of 300,450 and 600 . Relationships	August	1\&2
				Proof and applications of the identity sin2A + $\cos 2 \mathrm{~A}=1$. Only simple identities to be given Simple problems on heights and distances. Problems should not involve more than two right triangles. Angles of elevation / depression should be only $30^{\circ}, 45^{\circ}$, and 60°.		$3 \& 4$
Unit: VI	Mensuration: Areas related to circles Surface areas and volumes	25	36	Area of sectors and segments of a circle. Problems based on areas and perimeter cirirumference of the above said plane figures. (In calculating area of segment of a circle, problems should be restricted to central angle of $60^{\circ}, 90^{\circ}$ and 120° only. Surface areas and volumes of combinations of any two of the following. cubes, cuboiss, spheres, hemispheres and right circular cylinders $/$ cones.	September	1
						2
						3
						4
Syllabus break due to holidays and exam period in the month of October.						
Unit: VII	Statistics and Probability	25	36	Mean, median and mode of grouped data (bimodal situation to be avoided).	Novemebr	1\&2
				Classical definition of probability. Simple problems on finding the probability of an event.		$3 \& 4$
Unit: I \& IV				Fundamental Theorem of Arithmetic - statements after reviewing work done earlier and after illustrating and motivating through examples,	December	1
	Real Numbers $\&$	21	27	(Prove) If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, the other two sides are divided in the same ratio		2

